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Abstract. Based on the system-reservoir description, we propose a simple solvable microscopic model for
a nonequilibrium bath. This captures the essential features of a nonstationary quantum Markov process.
We establish an appropriate generalization of the fluctuation-dissipation relation pertaining to this process
and explore the essential modifications of the Bloch equations to reveal the nonexponential decay of the
Bloch vector components and transient spectral broadening in resonance fluorescence. We discuss a simple
experimental scheme to verify the theoretical results.
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1 Introduction

The dynamics of most of the quantum optical phenomena
are based on two fundamental processes: the coherent in-
teraction between the system (atom/molecule) and the
field mode (classical/quantum) and the incoherent dis-
sipation of the system. The latter is traditionally mod-
eled in terms of the well-known system-reservoir theory
within the appropriate finite temperature quantum sta-
tistical scheme [1–5]. Besides thermal reservoirs, the non-
thermal reservoirs [4,5] have also been found to be im-
portant in connection with the development of correlated
emission lasers [4] and squeezed light fields [5]. The essen-
tial underlying assumption about the bath, be it thermal
or nonthermal, is that it is considered to be in a state of
equilibrium throughout the process. Very recently a solv-
able microscopic model for a nonequilibrium bath has been
proposed [6] to explore classically, the influence of an ini-
tial nonequilibrium excitation in a complex system on the
relaxation of a specific quantity of interest. In the present
paper we extend this treatment to a quantum optical con-
text. Since the initial excitation creates a nonequilibrium
energy density fluctuation distribution which imparts non-
stationarity of the bath, it is expected that optical Bloch
equations which take into account both the coherent in-
teraction and the relaxation processes within a simplified
description of a two-level scheme, are likely to be mod-
ified by the nonstationarity of the bath [6,7]. Based on
a quantum version of the model, we study this essential
modification of the optical Bloch equations and explore
some of the relevant consequences.
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We thus consider a two-level system in contact with
a bath which is not in a thermal Boltzmann distribution.
This nonequilibrium bath is effectively realized in terms
of a semi-infinite dimensional broad-band reservoir which
is subsequently kept in contact with a standard thermal
bath which allows the nonthermal bath to relax with a
characteristic time scale. The important separation of the
time scales of fluctuations of the nonequilibrium and the
thermal bath is that [6] the former remains effectively sta-
tionary on the fast correlation of the thermal noise. The
model captures the essential features of a nonstationary
quantum Markov process. The physical situation that has
been addressed is the following. At t = 0 the excitation
is switched on and the intermediate bath is thrown into
a nonstationary state. We then follow the coherent dy-
namics of a classical laser-driven near-resonant two-level
system interrupted by incoherent emissive processes due
to nonequilibrium intermediate modes after t > 0 to ob-
serve the influence of relaxation of these modes on the
transient characteristics of the system. We show that the
decay of the Bloch vector components is nonexponential
in character so long as the nonstationarity persists. In ad-
dition, the nonstationarity of the bath results in time de-
pendence of the diffusion coefficient which manifests itself
in the transient resonance fluorescence spectra of the two-
level system. The underlying physical mechanism of the
transient characteristics can be understood with the help
of a generalized nonequilibrium fluctuation-dissipation re-
lation pertaining to this nonstationary quantum Markov
process. In the long time limit one, however, recovers the
standard Bloch equations and the spectral features.

The outline of the paper is as follows: In Section 2
we discuss the model for nonequilibrium bath and the
generalization of the fluctuation-dissipation relation corre-
sponding to the nonstationary process. The application of
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the model to explore the modification of the optical Bloch
equations and the transient spectral characteristics of res-
onance fluorescence have been carried out in Section 3.
In Section 4 we propose a simple experimental scheme to
verify the theoretical results on nonexponential decay and
transient broadening effect. The paper is concluded with
a summary of the main results.

2 Relaxation of a two-level atom in the
presence of a nonstationary bath

To start with we consider a model two-level atom (the
system) coupled to a set of relaxing modes considered as
a semi-infinite dimensional system which effectively con-
stitutes a nonequilibrium reservoir. This, in turn, is in
contact with a thermally equilibrated reservoir. Both the
reservoirs are composed of two sets of harmonic oscilla-
tors characterized by the frequency sets {ωj} and {Ωj}
for the equilibrium and nonequilibrium bath, respectively.
The total Hamiltonian is given by

H0 =
1

2
~ω0σz + ~

∑
j

ωjb
†
jbj + ~

∑
µ

Ωµc
†
µcµ

+~

∑
µ

gµ(σ+cµ + σ−c
†
µ)

+~

∑
j

∑
µ

αjµ(b†jcµ + bjc
†
µ) . (1)

The Hamiltonian is essentially a simpler quantum version
of the model used in [6] with two-level atom as the system.
The first term on the right-hand side describes the system
mode with characteristic frequency ω0. The second and
the third terms represent the thermal and the nonequilib-
rium linear modes. The next two terms represent the cou-
pling of the nonequilibrium bath with the system mode
and the thermal bath where the coupling constants are gµ
and αjµ, respectively. In writing down the Hamiltonian
we have made use of the rotating wave approximation.

The Heisenberg equations of motion for the system and
the reservoir operators are given by

σ̇+(t) = iω0σ+ − i
∑
µ

gµc
†
µσz , (2)

σ̇−(t) = −iω0σ− + i
∑
µ

gµcµσz , (3)

σ̇z(t) = −2i
∑
µ

gµcµσ+ + 2i
∑
µ

gµc
†
µσ− , (4)

ḃj(t) = −iωjbj − i
∑
µ

αjµcµ , (5)

ċµ(t) = −iΩµcµ − igµσ− − i
∑
j

αjµbj . (6)

Making use of the formal integral of equation (5) for bj(t)
in equation (6), we obtain

ċµ(t) = −iΩµcµ − igµσ− − i
∑
j

αjµe
−iωj(t−t0)bj(t0)

−
∑
j

∑
ν

αjµαjν

∫ t

t0

dt′cν(t′)e−iωj(t−t
′) . (7)

Taking into consideration that the interference time of∑
j αjµαjνe

−iωj(t−t
′) is much smaller than the time over

which the significant phase and amplitude modulation of
the linear modes cµ(t) takes place, the last term in equa-
tion (7) can be identified as a relaxation term in the usual
way [1] with the damping constant

γcµν = π ανµ(Ων) ανν(Ων) D(Ων) , (8)

where D(Ων) represents the density of states of the equi-
librium modes evaluated at Ων . Thus one can write down
the Langevin equation for the relaxing mode cµ as follows:

ċµ(t) = −iΩµcµ(t)− igµσ−(t)−
∑
ν

γcµνcν(t) + fµ(t). (9)

Here the last term fµ(t) represents the usual noise opera-
tor arising out of the coupling of the relaxing modes with
the thermal bath modes as given by

fµ(t) = −i
∑
j

αjµe
−iωj(t−t0)bj(t0) , (10)

where the reservoir average of fµ(t) is zero, i.e.

〈fµ(t)〉B = 0 . (11)

Here by average 〈O(t)〉B of an operator O(t) we mean

〈O(t)〉B = Tr{O(t)ρB} ,

where

ρB = Πj exp{(−~ωjb
†
jbj)/KT}/

[
1− exp

(
−
~ωj

KT

)]
.

ρB is the thermal operator for initial density matrix for
the thermal bath (initial density for the thermal bath {bj},
nonequilibrium bath {cµ} and the system are assumed to
be factorizable).

We now make the following approximations. The cross-
terms which involve rapidly evolving imaginary exponen-
tials in the summation among the bath modes in equa-
tion (9) are neglected with respect to the diagonals, slowly
evolving terms. This secular approximation is the usual
one made in the context of master equations for baths [1].
It is well known [1] that this approximation is valid in the
limit of weak coupling (|αµν | � |Ων |) and of a “flat” bath
spectrum for which |αµν | ≈ |αµ′ν′ |.

Taking into consideration the above approximations,
the Langevin equation for the relaxing modes, equa-
tion (9), can be written in the following form:

ċµ(t) = −iΩµcµ(t)− igµσ−(t)− γcµµcµ(t) + fµ(t) . (12)
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To explore the influence of an initial excitation of the
intermediate reservoir and its relaxation, we now consider
the evolution of these linear modes cµ in terms of equa-
tion (12), which allows a formal solution of the following
form [6]:

cµ(t) = csµ(t) + cµ(t0) e(−iΩµ−γ
c
µµ)(t−t0)

−igµ

∫ t

t0

dt′ e(−iΩµ−γ
c
µµ)(t−t′) σ−(t′) . (13)

The first term on the right hand side in the absence of the
coupling of the system mode represents the (long time)
stationary stochastic solution of the form

csµ(t) = csµ e
−i[Ωµ(t−t0)+φsµ] , (14)

where the amplitude csµ (operator) and the phases
φsµ (c-number) are assumed to be randomly distributed [6].
The random distribution of phases and amplitudes in the
stationary regime makes equation (13) an instantaneous
solution. The second term on the right hand side in equa-
tion (13) carries the information of relaxation of the cµ
modes due to their coupling to the thermal bath and is
in the form of a typical “memory-type term” (see the dis-
cussion later). The latter is not to be confused with the
usual memory term (or kernel) commonly arising out of
the frequency dependence of friction. The third term on
the other hand represents the effect of coupling of the sys-
tem mode to the nonequilibrium reservoir.

We now substitute this solution (13) in equation (2)
to obtain the equation of motion for the system operator
in the usual way as

σ̇+(t) = iω0σ+(t)− Γσ+(t) + Z†σz(t) , (15)

with

Γ = π g2(ω0) ρ(ω0) , (16)

where the ρ(Ω) represents the density of relaxing inter-
mediate oscillator modes. We assume further the weak de-
pendence of γcµµ on the modes to perform the integration
over Ω.

Γ can be identified as a dissipation constant of the
system mode due to the fluctuation of these modes. Also
note that

Z†(t) = −i
∑
µ

gµ

[
csµ(t) + c†µ(t0) e(iΩµ−γ

c
µµ)(t−t0)

]
is the noise operator for the nonequlibrium bath modes
with 〈Z†(t)〉NR = 0. Here by 〈O(t)〉NR we mean

〈O(t)〉NR = Tr{O(t)ρc} ,

where

ρc = Πµ exp{(−~Ωµc
†
µcµ)/KT}/

[
1− exp

(
−
~Ωµ

KT

)]
.

Here ρc is the initial thermal density operator for the
nonequilibrium bath.

We proceed similarly to obtain the other equations of
motion for system operators, σ− and σ+ as,

σ̇−(t)=−iω0σ−(t)− Γσ−(t) + Z(t)σz , (17)

σ̇z(t)=−2Γ (1+σz)+2Z(t)σ+(t)+2Z†(t)σ−(t) . (18)

Introducing the slowly varying operators as
S̃+(t) = σ+(t) e−iω0(t−t0) ,

S̃−(t) = σ−(t) eiω0(t−t0) ,

S̃z(t) = 1
2σz ,

(19)

we obtain the following Langevin equations:
˙̃S+(t)=−Γ S̃+(t) + 2ξ̃†(t)S̃z(t) ,

˙̃S−(t)=−Γ S̃−(t) + 2ξ̃(t)S̃z(t) ,

˙̃Sz(t)=−2Γ [1
2 +S̃z(t)]+ξ̃

†(t)S̃−(t)+ξ̃(t)S̃+(t),

(20)

where

ξ̃†(t) = −i
∑
µ

gµ

[
cs†µ (t)e−iω0(t−t0)

+c†µ(t0)ei(Ωµ−ω0)(t−t0) e−γ
c
µµ(t−t0)

]
. (21)

The nonequilibrium generalization of the fluctuation-
dissipation relation is now immediately apparent. Using
equation (21) we have

〈ξ̃†(t)ξ̃(t′)〉NR =
∑
µ

g2
µ

[
〈cs†µ c

s
µ〉NR e

i(Ωµ−ω0)(t−t′)

+〈c†µ(t0)cµ(t0)〉NR e
i(Ωµ−ω0)(t−t′)

×e2γcµµt0e−γ
c
µµ(t+t′)

]
. (22)

We denote the average photon number of the nonequilib-
rium bath by

n̄(Ωµ, t0) = 〈c†µ(t0)cµ(t0)〉NR , (23)

where t0 signifies the dependence of average photon num-
ber of the nonequilibrium bath on its initial state of prepa-
ration. Also the steady state average photon number is
given by

n̄(Ωµ) = 〈cs†µ c
s
µ〉NR .

After replacing the summation by integration and γcµµ by
an average γ in equation (22) we obtain in the usual way

〈ξ̃†(t)ξ̃(t′)〉NR =

[Γ n̄(ω0)+e−2γ(t−t0)Γ n̄(ω0, t0)]δ(t− t′) . (24)

Equation (24) and 〈ξ̃(t)〉 = 0 summarizes the essen-
tial properties of the stochastic processes due to inter-
mediate oscillator bath modes {cµ}. It is important to
emphasize that the exponential term in equation (24)
(exp{−2γ(t− t0)}) does not contain time-difference of the
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two different instants t and t′ over which the stochastic
process is correlated. Thus this exponential term is not to
be confused with exp{−2γ(t−t′)} which normally appears
as a typical memory term in correlation function as

〈ξ(t)ξ(t′)〉 = Constant× exp[−2γ(t− t′)] ,

in a nonMarkovian stochastic process. The time-difference
of the two instants t and t′ in the present study appears as
an argument of a delta function [δ(t− t′)] in equation (24)
due to the use of standard broad-band reservoirs. t in the
exponential function in equation (24) is rather a slow time
variable, which makes the stochastic process due to {cµ}-
modes nonstationary. In other words the correlation func-
tion in equation (24) is not invariant under time trans-
lation. We are thus concerned here with a nonstationary
quantum Markov process. This consideration is essential
for the application of Onsager’s regression hypothesis for
calculation of spectra with two-time correlation function
in the present case as shown in the next section.

Rewriting Γ n̄(ω0, t0) in equation (24) in terms of a
deviation from its steady state value Γ n̄(ω0) as

Γ n̄(ω0, t0) = D(t0)− Γ n̄(ω0) ,

we identify a time-dependent diffusion coefficient D(t) in
the last equation (24) as

D(t) = Γ n̄(ω0) + [D(t0)− Γ n̄(ω0)] e−2γ(t−t0) . (25)

We thus obtain

〈ξ̃†(t)ξ̃(t′)〉NR = Γ n̄(ω0)
[
1 + re−2γ(t−t0)

]
δ(t− t′), (26)

where we denote 

Γ n̄(ω0) = D(∞) ,

r =
D(t0)

D(∞)
− 1

=
n(ω0, t0)

n(ω0)
.

(27)

Equation (26) is the desired nonequilibrium quantum
generalization of the fluctuation-dissipation relationship.
The classical version of the above equation is given in [6].
This relates instantaneous fluctuations of the nonequilib-
rium bath (which itself is undergoing relaxation at a rate γ
due to its coupling with the thermal bath) to the dissipa-
tion of the energy of the system mode through Γ . The
nonequilibrium nature of the bath is implicit in the initial
preparation which creates an initial diffusion coefficient
D(t0) and also in the exponentially decaying term.

To check the consistency of the treatment and to allow
ourselves a fair comparison with the classical treatment,
we now make the following comments.

i) In the steady state limit one recovers the usual fluctu-
ation-dissipation relation for a thermal bath at equi-
librium.

ii) Equation (26) can also be expressed in terms of en-
ergy density fluctuations of the nonequilibrium modes.
The energy density which is proportional to the power
spectrum centered around ω0 is given by [~ = 1]

u(Ω, t)=
Ω

4π

∫ +∞

−∞
dτ〈ξ̃†(t)ξ̃(t+ τ)〉ei(Ω−ω0)τ =

1

2
Ωn̄(Ω)+e−2γ(t−t0)

[
u(Ω, t0)−

1

2
Ωn̄(Ω)

]
.(28)

It is important to note that t is the slow time vari-
able which is well separated from the time-scale of ther-
mal noise. The fluctuations of the noise operator ξ(t) is
now explicitly determined by the nonequilibrium state of
the bath modes {cµ} through its energy density u(Ω, t) at
each instant of time. In other words the instantaneous
nonequilibrium energy density distribution of fluctuat-
ing modes is related to the friction coefficient of these
modes on the system degree of freedom through a dy-
namic equilibrium. The classical version of the above
equation can be recovered in the high-temperature limit
(n̄(Ω) = 1/[exp(Ω/KT )− 1] ' KT

Ω
) to obtain

u(Ω, t) =
1

2
KT + e−2γ(t−t0)

[
u(Ω, t0)−

1

2
KT

]
. (29)

This classical version was discussed earlier [6] in the con-
text of classical kinetics of complex systems. Our quantum
generalization is more relevant to quantum optical situa-
tions as discussed in the next section.

3 Modified Bloch equations and transient
resonance fluorescence

We have discussed above a simple solvable model for a
nonstationary quantum Markov process and an appropri-
ate generalization of the fluctuation-dissipation relation
pertaining to this process. Two immediate consequences
are evident. The first one concerns the modification of
decay of the Bloch vector components in the presence
of relaxation of the intermediate bath modes. We show
here that the decay is nonexponential in nature so long
as the nonstationarity persists following the sudden exci-
tation. The second one centers around the explicit time
dependence of diffusion coefficient due to nonstationarity
implied in the fluctuation-dissipation relations (26). The
transient noise spectrum of the two-level system is there-
fore expected to bear this signature of time dependence.
With this end in view we calculate the physical spectrum
of the two-level system in contact with the nonequilibrium
bath driven by a near-resonant classical monochromatic
light field. The Hamiltonian of the coupled atom-field sys-
tem reads as follows:

H = H0 + ~

[
V σ+ e−iωc(t−t0) + V σ− e

iωc(t−t0)
]
, (30)

where H0 is given by equation (1) and V represents the
amplitude of the classical pump field with frequency ωc.
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Proceeding as before, we obtain the Langevin equations
for the slowly varying system operators as

Ṡ+(t) = −(Γ − iδ)S+ + 2ξ†(t)Sz − 2iV Sz ,

Ṡz(t) = −2Γ (Sz + 1
2 )− iV S+

+iV S− + ξ(t)S+ + ξ†(t)S− ,

Ṡ−(t) = −(Γ + iδ)S− + 2ξ(t)Sz + 2iV Sz ,

(31)

where δ(= ω0 − ωc) is the detuning and
S+(t) = σ+(t)e−iωc(t−t0) ,

S−(t) = σ−(t)eiωc(t−t0) ,

Sz(t) = 1
2σz(t) ,

(32)

ξ(t) is the noise operator as given by

ξ(t)= i
∑
µ

gµ

[
csµ(t)+cµ(t0)e(−iΩµ−γ)(t−t0)

]
eiωc(t−t0). (33)

The noise is characterized by

〈ξ(t)〉NR=0 ,

〈ξ†(t)ξ(t′)〉NR=Γ n̄(ν)[1+re−2γ(t−t0)]δ(t− t′) . (34)

While considering the above equations we emphasize again
the separation of time scales γ � Γ .

As a next step, we construct the following Bloch
equations for one-time averages from the Langevin equa-
tions (31) (this requires the calculation of averages like
〈ξ†(t)Sz〉 which include nonstationary contribution involv-
ing equation (34) as shown in appendix A),

〈Ṡ+(t)〉NR=−(Γ − iδ)〈S+(t)〉NR

+2Γ n̄re−2γt〈S+(t)〉NR−2iV 〈Sz(t)〉NR, (35)

〈Ṡ−(t)〉NR = −(Γ + iδ)〈S−(t)〉NR

+2Γ (n̄+ 1)re−2γt〈S−(t)〉NR

+2iV 〈Sz(t)〉NR , (36)

〈Ṡz(t)〉NR = −2Γ
[
{1− (2n̄+ 1) re−2γt}〈Sz(t)〉NR + 1

2

]
−iV 〈S+(t)〉NR + iV 〈S−(t)〉NR . (37)

The following comments should be made about the
equations (35-37) supplemented by equation (34):

i) The exponential term in equation (34) results in an
effective transient modification of decay rates of all
the Bloch vector components. In the long time limit
one, however, recovers the usual decay rates and the
standard Bloch equations. It is also interesting to note
that the two polarization components 〈S+〉 and 〈S−〉
decay at different rates in contrast to the usual case
of equilibrium bath.

ii) The nonstationary contributions in the Bloch equa-
tions immediately assert that in the absence of the
driving fields (V = 0) the decay of the polarization

components is nonexponential in nature. This is rem-
iniscent of what has been observed in the relaxation
kinetics of classical complex systems, where the influ-
ence of an initial nonequilibrium excitation of others
degrees of freedom of a complex system on the relax-
ation of a specific quantity of interest has been ex-
plored.

iii) Although the noise correlation in equation (34) in-
volves an exponentially decaying term, δ(t− t′) makes
the noise instantaneously correlated. This implies that
we consider here a broad-band reservoir instead of a
colored bath. It is important to note that Lewenstein
et al. [8] in a different context have considered earlier
the atomic decay in the presence of a colored reser-
voir. They have used the modified Bloch equations in
nonMarkovian form (which involves exponentially de-
caying terms due to the finite response time of the
reservoir) and shown how the effects of the colored
reservoir can be inhibited at large driving fields. Thus
the origin of the exponential term in equation (34) is
different.

We now turn to the second issue, i.e. the calculation of
the transient resonance fluorescent spectra. Using matrix
notation, the above three equations (35-37) for single time
expectation values can be put in a compact form as

du(t)

dt
= M(t) u(t) + f , (38)

where u(t) and f are the column vectors and are given by

u =

〈S+(t)〉NR

〈Sz(t)〉NR

〈S−(t)〉NR

 and f =

 0

−Γ

0

 , (39)

with
see equation (40) next page

Since the calculation of spectra rests on the evaluation
of two-time correlation functions of the atomic operators,
it is essential to examine the validity of quantum regres-
sion hypothesis in the present context. To this end, we
note the following points.

The essential statistical properties of the intermediate
bath modes are contained in equation (34). This equation
suggests a differential behavior in time dependence of the
two terms. First, the exponential time dependence is due
to the initial preparation at t0 and subsequent relaxation
at any time (t − t0) of the intermediate bath modes. So
the nonstationary nature is implied in this term. On the
other hand the δ(t− t′) term essentially signifies the cor-
relation of intermediate bath fluctuations, ξ(t), at times t
and t′. The presence of δ(t − t′) ensures the broad band
nature and hence the Markov property of the bath. These
statistical considerations, therefore, reveal that the dy-
namics of the two-level atom is acted upon by a nonsta-
tionary but Markovian stochastic process due to the inter-
mediate oscillators. By using the Langevin description of
Heisenberg equation of motion, Lax [9] has proved that
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M(t) =

−(Γ − iδ) + 2Γ n̄re−2γt −2iV 0

−iV −2Γ + 2Γr(2n̄+ 1)e−2γt iV

0 2iV −(Γ + iδ) + 2Γ (n̄+ 1)re−2γt

 . (40)

Markov property implies regression theorem as well the
converse. The Markov property is defined by the require-
ment that a Langevin force at time t is uncorrelated to any
information at earlier time t′. The regression hypothesis
is a consequence of this requirement. Lax has specifically
shown [9] that Onsager’s original statement for an equilib-
rium situation is valid even for a nonequilibrium situation
provided the system is Markovian. The validity of regres-
sion hypothesis therefore implies that two-time correlation
evolves in the same way as one-time expectation value.

The equation for evolution of two-time correlation
functions is then given by

d

dτ
v(t2, τ) = M(t2, τ) v(t2, τ) + F(t2) , (41)

where

v(t2, τ) =

〈S+(t2 + τ) S−(t2)〉NR

〈Sz(t2 + τ) S−(t2)〉NR

〈S−(t2 + τ) S−(t2)〉NR

 ,

F(t2) =

 0

−Γ 〈S−(t2)〉NR

0

 . (42)

The relevant correlation function v1(t2, τ) required for cal-
culation of spectra is the first component of the vector
v(t2, τ) and is given by

v1(t2, τ) = 〈S+(t2, τ)S−(t2)〉NR . (43)

We assume that the atom is initially in its ground state.
Equation (41) is then solved to calculate the correlation
function (43). The details are given in the appendix B.

At this point it must be emphasized that since we
are dealing with a nonstationary situation the standard
steady state definition of spectrum is not adequate to de-
scribe the transient spectral features. We therefore resort
to a nonsteady state spectrum or the so-called “physi-
cal spectrum” of the emission from the two-level atoms,
where the attention is focused on a dynamic evolution
of the spectrum following an abrupt excitation of the
atom and the intermediate oscillator modes. The main
reason for studying the time-dependent spectrum is that
the familiar power spectrum which results from Weiner-
Khintchine theorem is not applicable to nonstationary
processes. Eberly and Wodkiewicz [10] have shown that
the suitably normalized counting rate of a photodetector
can be used to define a time-dependent spectrum. This
definition allows the influence of the spectrum analyzer
(basically a Fabry-Perot interferometer, for example) to

be exhibited in the spectrum so that the band limit of
the measuring device is appropriately incorporated which
makes the spectrum free from ambiguities. It has also been
emphasized [10] that when the instrumental width, W , is
narrow enough such that W � Γ the spectrum appears
to be qualitatively close to Weiner-Khintchine spectrum.
This transient spectrum has been used previously on sev-
eral occasions [11]. Following Eberly and Wodkiewicz [10]
we define the time-dependent spectrum in terms of the
time correlation function v1(t2, τ) as follows:

S(t, ω,W ) = 2W Re

∫ t

0

dt2 e
−W (t−t2)

×

∫ t−t2

0

dτ e(W2 −i∆)τ v1(t2, τ) . (44)

Here t is the elapsed time after the system and the in-
termediate oscillator modes have been subjected to the
initial excitation at t = t0(= 0), W is the full width of the
transmission peak of the interferometer and ∆(= ω − ωc)
is the detuning, or frequency offset of the Fabry-Perot line
center above the frequency of the field ωc. It is important
to note that the time-dependent spectrum is expressed
in terms of the two integrals. The first integral is over
the correlation time τ and is actually the counterpart of
Weiner-Khintchine spectrum band limited by the width
W of the measuring device, while the second one over t2
takes into account of the nonstationarity which makes the
spectrum t-dependent.

Making use of equation (43) in equation (44), perform-
ing the integration over τ and t2 and extracting the real
part, we obtain numerically the time-dependent spectrum
as discussed below.

Since the excitation at t = 0 prepares an initial
nonequilibrium energy density of the intermediate oscil-
lator modes which differs from its equilibrium value, the
initial diffusion coefficient D(0) deviates from its station-
ary long time value D(∞). This deviation is measured in

terms of r(= D(0)
D(∞) − 1) (see Eq. (27)) or equivalently in

terms of the ratio of the photon numbers n(ω0,t0)
n(ω0) . An-

other quantity of interest is the rate of relaxation γ of the
nonequilibrium intermediate oscillator modes due to their
coupling to the thermal modes. Both r and γ contribute
significantly to the nonequilibrium version of fluctuation-
dissipation relation (Eq. (26)) which is essential for un-
derstanding the influence of a nonequilibrium bath on
the transient fluorescence spectrum. In Figure 1 we plot
the physical spectra at three different times after the ini-
tial excitation at t = 0 for the parameter set r = 0.4,
n̄ = 0.1, Γ = 1.0, γ = 0.1 under resonance condition
δ = 0 and instrumental linewidth W = 4.0 for a low value
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Fig. 1. Time-dependent resonance fluorescence spectra of the
two-level system for different dimensionless times with W =
4.0, δ = 0.0, n̄ = 0.1, r = 0.4, γ = 0.1 and V = 2.5 (arbitrary
scales).
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Fig. 2. Time-dependent resonance fluorescence spectra of the
two-level system for different dimensionless times with W =
4.0, δ = 0.0, n̄ = 0.1, r = 0.4, γ = 0.1 and V = 10.0 (arbitrary
scales).

of field strength V = 2.5. The choice of parameter space is
guided by the early work of Eberly and Wodkiewicz [10]
on the physical spectra of resonance fluorescence. For a
higher value of V (= 10.0) the expected three-peak Mol-
low structure appears as shown in Figure 2 (all other pa-
rameters kept fixed). The steady state is clearly achieved
around t = 10.0. It is interesting to note that in the spec-
tra showed in Figures 1 and 2, the asymptotic condition
corresponds to the usual stationary bath case, presenting
the narrowest line. The transient nature of broadening of
the bands is due to the creation of a nonequilibrium bath
mode energy density through r. Since r is a measure of
the excess energy gained by the intermediate modes into
which the system has to release its energy, the system
also draws some energy from these modes by virtue of the

fluctuation-dissipation relation. The latter relation illus-
trates a dynamical balance of inward flow of energy due
to fluctuations from the reservoir into the system and the
outward flow of energy from the system to the reservoir
due to dissipation of the system mode. This nonstation-
ary diffusion of fluctuations from the intermediate bath
modes into the system leads to transient spectral broad-
ening. This persists so long as the nonstationarity remains.
If the relaxation of these bath modes approaches the time
scale of 1

Γ (with increase of γ) the broadening effect no
longer appears. In the next section we describe an exper-
imental scheme to show how this can be realized within
the purview of a simple cavity QED experiment.

4 Discussion of an experimental scheme and
conclusions

Based on a microscopic model for a nonequilibrium bath
we have constructed the modified Bloch equations which
incorporate the effect of nonstationary relaxation and cal-
culated the transient resonance fluorescence spectra of a
two-level system driven by a near resonant strong classical
field.

We now discuss a specific system presenting the tran-
sient broadening effect studied in this paper. It is well
known that the spectrum of the radiation emitted by
a strongly driven system is considerably modified if the
atoms are confined in a cavity. For our purpose the dy-
namics may be conveniently described if one considers a
two-level Rydberg atom as a system contained in a cavity
(whose modes serve as the intermediate oscillator modes
of the present model). The cavity in turn is weakly coupled
to the vacuum modes playing the role of the equilibrium
reservoir through the cavity losses. By sudden sweeping of
the resonance of the cavity it is possible to dump an ap-
preciable amount of energy on the cavity modes by chang-
ing the number of photons abruptly. (The tuning of cav-
ity in studying the emission of strongly driven two-level
systems like Ba atoms into the modes of the cavity had
been experimentally carried out both under adiabatic [12]
and nonadiabatic [13,14] conditions in cavity QED experi-
ments [11–13].) This corresponds to the initial preparation
of the nonstationary state of the cavity modes by changing

r (= n(ω0,t0)
n(ω0) , see Eqs. (26) and (27)) in such a way that

the energy of these modes becomes suddenly higher than
the average energy. Once this nonstationarity is attained,
the effect of relaxation of the cavity modes on the emis-
sion of the strongly driven (externally) two-level atoms
can be monitored by observing the transient fluorescence
spectrum. Since the atom-cavity interaction (Γ , say ∼ 100
MHz) is strong compared to the decay rate of the cavity
modes (γ, say ∼ 20 MHz), the separation of time scales as
required can be conveniently maintained. We also expect
to observe the nonexponential decay of emission of the ex-
cited two-level atom into the modes of an optical cavity
so long as the nonstationarity persists.

We now summarize the main conclusions of this study:
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i) The microscopic model proposed here may serve as a
simple solvable paradigm for a nonstationary quantum
Markov process.

ii) We establish an appropriate generalization of the
fluctuation-dissipation relation and its classical corre-
spondence pertaining to the above-mentioned process.

iii) The origin of nonstationarity (or nonequilibrium na-
ture of the bath) lies in the creation and subsequent
relaxation of an energy density fluctuation distribu-
tion function of the intermediate bath modes following
a sudden excitation.

iv) Keeping in view the systematic separation of time-
scales involved in the overall dynamics we have shown
that the decay of the polarization and population in-
version components of the Bloch vector is nonexpo-
nential so long as the nonstationarity persists.

v) The nonstationarity of the bath results in time de-
pendence of the diffusion coefficient which show up
in the transient broadening of the physical spectra of
resonance fluorescence.

vi) We have outlined a simple experimental scheme within
a cavity QED setup to verify the aspects nonexponen-
tial decay and transient broadening of emissions from
a strongly driven two-level system in a cavity.

Since the underlying model of relaxation employed
here bears its origin in complex coupled systems, one may
also envisage guest-host systems embedded in a lattice
(where the immediate local neighborhood of the guest
comprises intermediate oscillator modes and the lattice
plays the role of a thermal bath) as typical candidates for
experimental realization of such transient fluorescent pro-
cesses. We thus expect the model to be relevant in the
context of single molecule spectroscopy [15].

Partial financial support by the Department of Science and
Technology, Government of India, is thankfully acknowledged.
D.S.R. is indebted to Professor G. S. Agarwal for discussions.

Appendix A: Calculation of the average
〈ξ†(t)Sz(t)〉NR

To calculate 〈ξ†(t)Sz(t)〉NR we proceed as follows:
We have from equation (36)

ξ†(t) = −i
∑
µ

gµ[cs†µ (t) + c†µ(t0)e(iΩµ−γ)(t−t0)]e−iωc(t−t0) .

This can be written as

ξ†(t) = ξs†(t) + ξ†N (t) , (A.1)

where, ξs†(t) = −i
∑
µ gµc

s†
µ (t)e−iωc(t−t0) represents the

stationary (long time) fluctuation and

ξ†N (t) = −i
∑
µ

gµc
†
µ(t0) e(iΩµ−γ)(t−t0) e−iωc(t−t0)

denotes the fluctuations due to the coupling of the system
with the relaxing modes. It is essential to note that be-
cause of the relaxation ξ†N (t) noise is nonstationary. It is
important to note the separation of time scales of ξs†(t)
and ξ†N (t). ξs†(t) is much faster compared to ξ†N (t) and
represents a Gaussian white noise. Also ξs†(t) and ξ†N (t)
are assumed uncorrelated [6]. Thus we note

〈ξ†(t)Sz(t)〉NR = 〈ξs†(t) Sz(t)〉NR + 〈ξ†N (t)Sz(t)〉NR .

Since, ξs†(t) is much faster and describes a stationary pro-
cess, we write

〈ξs†(t) Sz(t)〉NR = 〈ξs†(t)〉NR〈Sz(t)〉NR = 0 .

Thus we have

〈ξ†(t) Sz(t)〉NR = 〈ξ†N (t) Sz(t)〉NR . (A.2)

Because of the exponential term exp[−γ(t − t0)] in the
expression of ξ†N (t), expression (A.2) describes a nonsta-
tionary average which cannot be equated to zero as shown
below. Making use of the identity

Sz(t) = Sz(t−∆t) +

∫ t

t−∆t
dt′Ṡz(t

′)

and the expression for Ṡz(t), we get

Sz(t) = Sz(t−∆t)

+

∫ t

t−∆t
dt′

[
− 2Γ

{
Sz(t

′) +
1

2

}
− iV S+(t′)

+iV S−(t′) + ξ(t′)S+(t′) + ξ†(t′)S−(t′)

]
=

Sz(t−∆t)

+

∫ t

t−∆t
dt′

[
− 2Γ

{
Sz(t

′) +
1

2

}
− iV S+(t′)

+iV S−(t′) + ξs(t′)S+(t′) + ξN (t′)S+(t′)

+ξs†(t′)S−(t′) + ξN†(t′)S−(t′)

]
.

We then calculate the average

〈ξN†(t)Sz(t)〉NR =

∫ t

t−∆t
dt′〈ξN†(t)ξN (t′)S+(t′)〉NR ,

where we make use of the fact that ξs†(t) and ξ†N (t) are
uncorrelated [6] and the operator Sz(t

′) at time t′ is not
affected by fluctuation at a latter time t. Following Bour-
ret [16,17] and van Kampen [18] we now make decoupling
approximation (which implies that the correlation of fluc-
tuations ξN (t) is much short compared to the coarsed-
grained time scale over which the average 〈S+〉 evolves in
time) to obtain

〈ξN†(t)ξN (t′)S+(t′)〉NR = 〈ξN†(t)ξN (t′)〉NR〈S+(t′)〉NR.
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We then use the fluctuation-dissipation relation for the
ξN (t) (Eq. (37)) to obtain

〈ξN†(t) Sz(t)〉NR = Γ n̄re−2γt〈S+(t)〉NR . (A.3)

We thus take note in passing that identification of a
nonstationary part ξ†N (t) (which is not invariant under
time translation) in equation (A.1) leads us to a nonzero
average like (A.3). The other nonstationary averages are
similarly calculated.

Appendix B: Calculation of two-time
correlation functions

The matrix M as defined in equation (40) may be rewrit-
ten as

M(t) = M0 + 2Γ r e−2γt M1 , (B.1)

where

M0 =

−(Γ − iδ) −2iV 0

−iV −2Γ iV

0 2iV −(Γ + iδ)

 , (B.2)

M1 =

n̄ 0 0

0 2n̄+ 1 0

0 0 n̄+ 1

 . (B.3)

The solution of equation (41) in terms of M0 and M1 is

v(t2, τ) = exp

[
M0τ −

Γ

γ
re−2γ(t2+τ)M1

]{
v(t2, 0)

+

∫ τ

0

dt exp

[
−M0t+

Γ

γ
re−2γ(t2+τ)M1

]}
F(t2). (B.4)

We assume that the atom is initially in its ground state.
Then,

v(t2, 0) =


1
2 (1 + 2〈Sz〉NR)

− 1
2 〈S−〉NR

0

 , u(0) =

 0

− 1
2

0

 ,

where v(t2, τ) and u(t) are defined by equations (42)
and (39), respectively. Defining a matrix T and a vector
g as

T =

0 1 0

0 0 − 1
2

0 0 0

 , g =


1
2

0

0

 ,

we can write

v(t2, 0) = Tu(t2) + g . (B.5)

Hence from equation (B.4), using equation (B.5) we get

v(t2, τ) = exp

[
M0τ −

Γ

γ
re−2γ(t2+τ)M1

]{
[Tu(t2) + g]

+

∫ τ

0

dt exp

[
−M0t+

Γ

γ
re−2γ(t2+τ)M1

]}
F(t2). (B.6)

The solution of equation (38) is

u(t2) = exp

[
M0t2 −

Γ

γ
re−2γt2M1

]
×

{
u(0) +

∫ t2

0

dt exp

[
−M0t+

Γ

γ
re−2γtM1

]}
f . (B.7)

We again define a matrix

K =

0 0 0

0 0 −Γ

0 0 0

 ,

to write

F(t2) = K u(t2) . (B.8)

Using equation (B.7) and equation (B.8), we get from
equation (B.6) the solution for two-time correlation func-
tion in terms of the initial condition as follows:

v(t2, τ) = exp

(
M0τ −

Γ

γ
re−2γ(t2+τ)M1

)
×

[
T

[{
exp

(
M0t2 −

Γ

γ
re−2γt2M1

)}
u(0)

+ exp

(
M0t2 −

Γ

γ
re−2γt2M1

)
×

∫ t2

0

dt exp

(
−

{
M0t−

Γ

γ
re−2γtM1

})
f

]
+g

]
+ exp

(
M0τ −

Γ

γ
re−2γ(t2+τ)M1

)
×

{∫ τ

0

dt exp

(
−

{
M0t−

Γ

γ
re−2γ(t2+τ)M1

})}
K

{
exp

(
M0t2 −

Γ

γ
re−2γt2M1

)
u(0)

+ exp

(
M0t2 −

Γ

γ
re−2γt2M1

)
×

∫ t2

0

dt exp

(
−

{
M0t−

Γ

γ
re−2γtM1

})
f

}
. (B.9)
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